Hradla, volty, jednočipy
  • index
  • Poděkování
  • Předmluva vydavatele
  • Předmluva mentora
  • Výmluvy místo předmluvy
  • 1 Budu velkým elektronikem a budu stavět hrozně cool obvody!
    • 1.1 Blikač
    • 1.2 „Dílna“
    • 1.3 Kde nakoupit součástky?
    • 1.4 Nákupní seznam: Součástky pro blikač
  • 2 Postavte si blikač – teď už to snad půjde lépe
    • 2.1 Který rezistor je ten pravý?
    • 2.2 Měření multimetrem
    • 2.3 LED podrobněji
  • 3 Hlava, koleno, zem…
    • 3.1 „Nemá to něco společného s atomy?“
    • 3.2 Napětí
    • 3.3 Proud
    • 3.4 Vodič a nevodič
    • 3.5 Odpor
    • 3.6 Měření, měření!
    • 3.7 Ohmův zákon
    • 3.8 Výkon
    • 3.9 … a malé opáčko
    • 3.10 Zkratky u značení
    • 3.11 Vyvolená čísla
    • 3.12 Pro lepší představu
    • 3.13 Střídavý proud
    • 3.14 Zkrat
    • 3.15 Multimetr jako zkrat?
    • 3.16 Elektromagnetická indukce
    • 3.17 Značky pro schémata
  • 4 Zdroje napětí
    • 4.1 Společná zem
  • 5 Vedle sebe, za sebou
    • 5.1 Svítilna s LEDkou
    • 5.2 Sériové zapojení
    • 5.3 Dělič napětí
    • 5.4 Paralelní zapojení
    • 5.5 Kirchhof 2
    • 5.6 Baterie sériově – paralelně
    • 5.7 Potenciometr
    • 5.8 Úbytek napětí na LED
    • 5.9 Co jsou vlastně ty diody zač?
    • 5.10 Datasheet
  • 6 Základní elektronické součástky
    • 6.1 Rezistor
    • 6.2 Kondenzátor
    • 6.3 Cívka
    • 6.4 Transformátor
  • 7 Polovodiče
    • 7.1 P-N přechod
    • 7.2 Dioda
    • 7.3 Tranzistor
    • 7.4 Rozsvítíme prstem LED!
    • 7.5 Tranzistor řízený polem (FET)
    • 7.6 Šoupejte nožkou…
    • 7.7 MOSFET
    • 7.8 A to je všechno s polovodiči?
  • 8 Pouzdra elektronických součástek
    • 8.1 Co je to SMT a THT
    • 8.2 DIP, DIL
    • 8.3 Co s těmi ostatními?
  • 9 Blikač s Arduinem
    • 9.1 Když se řekne Arduino
    • 9.2 Programování Arduina
    • 9.3 Blikání Arduinem
    • 9.4 Krok zpět k drátům
    • 9.5 Arduino a EduShield
  • 10 Fotorezistor
    • 10.1 Obrácená logika
    • 10.2 Trimry
    • 10.3 Lepší řešení detektoru tmy
    • 10.4 Fotorezistor a Arduino
  • 11 Termistor
  • 12 LM35
  • 13 „Jak naučit kámen počítat“
    • 13.1 Stavebnice
    • 13.2 Logické funkce
    • 13.3 TTL a CMOS
    • 13.4 Operace s bity
    • 13.5 Booleova algebra, výroková logika
    • 13.6 Logika v číslicové technice
    • 13.7 U-káz-ka! U-káz-ka!
    • 13.8 Tlačítko a přepínač
    • 13.9 Pull Up a Pull Down
    • 13.10 Pomalé tlačítko
    • 13.11 Schmittův obvod
    • 13.12 Blokovací kondenzátor
    • 13.13 Buzení z Arduina
  • 14 Kombinační logika
    • 14.1 De Morganův zákon
    • 14.2 XOR
    • 14.3 Logické funkce dvou proměnných
    • 14.4 Vícevstupová hradla
    • 14.5 Mimochodem, když máme NAND, co ty ostatní?
    • 14.6 Zjednodušování logických výrazů
    • 14.7 AND-OR-INVERT
    • 14.8 Multiplexor
    • 14.9 Proč slučujeme přes OR?
    • 14.10 Dekodér (demultiplexor) „1-z-N“
    • 14.11 Vícebitové varianty
    • 14.12 Otevřený kolektor, třetí stav, OE
    • 14.13 Dekodéry
    • 14.14 Pojďme, budeme už fakt něco počítat!
    • 14.15 Aritmeticko-logická jednotka (ALU)
  • 15 Sedmisegmentovky LED
    • 15.1 Víc sedmisegmentovek…
  • 16 Jak vypadá hradlo uvnitř
    • 16.1 Proč zapojovat blokovací kondenzátory k napájení
    • 16.2 Negované signály
    • 16.3 MOS, CMOS
  • 17 „Plnou parou vzad!“ – „Ale jak daleko?“
    • 17.1 Ještě pípat!
  • 18 Zpětná vazba
    • 18.1 Astabi-cože?
    • 18.2 Blikač
    • 18.3 Krystalový oscilátor DIL
    • 18.4 Monostabilní klopný obvod
    • 18.5 Detektor pohybu
    • 18.6 Bistabilní klopný obvod R-S
    • 18.7 Zakázané kombinace, zpětná vazba, …
    • 18.8 Hodiny
    • 18.9 Synchronní / Asynchronní
    • 18.10 Symbol pro klopný obvod
    • 18.11 Reálný klopný obvod D: 7474
    • 18.12 Reálný latch 7475
  • 19 Panna, nebo orel?
    • 19. 1 Náhoda? Nemyslím si…
    • 19.2 Střída
    • 19.3 PWM
    • 19.4 Dělení kmitočtů
    • 19.5 Klopný obvod T
    • 19.6 Klopný obvod J-K
  • 20 Čítače
    • 20.1 Čítač s nulováním
    • 20.2 Čítače v praxi
    • 20.3 Hrací kostka
    • 20.4 Další čítače
    • 20.5 Ještě nějaké čítače?
    • 20.6 Rotační enkodér
    • 20.7 Čítač s dekodérem 1-z-10 typu 744017
    • 20.8 Počítadlo k autodráze
  • 21 Posuvné registry
  • 22 Paralelní a sériová rozhraní
    • 22.1 Buzení displeje ze sedmisegmentovek
    • 22.2 Posuvný řadič SIPO 74HCT595
  • 23 Sériová komunikace
    • 23.1 Sériová sběrnice SPI
    • 23.2 Sériová sběrnice I2C
    • 23.3 Prakticky…
    • 23.4 EduShield a displej
    • 23.5 RS-232, UART, Serial…
    • 23.6 Převodník USB na sériové rozhraní
    • 23.7 1-Wire
  • 24 Paměti
    • 24.1 7489 – 64 bitů RAM
    • 24.2 Dynamická RAM
    • 24.3 ROM, PROM a další
    • 24.4 To nejlepší z obou světů
    • 24.5 Několik tipů k pamětem
    • 24.6 Jak se zapisuje do EEPROM či FLASH?
    • 24.7 Sériové paměti
  • 25 Sériová paměť prakticky
  • 26 Hodiny reálného času
  • 27 Paměťové karty
  • 28 Logický analyzátor, logická sonda
  • 29 Elektronika a svět kolem nás
    • 29.1 Ovládáme přírodu elektronikou
    • 29.2 Příroda ovládá elektroniku
  • 30 Meteostanice
    • 30.1 Výběr součástek
    • 30.2 Špinavej trik
    • 30.3 Stavíme z polotovarů
  • 31 Bezdrátový přenos dat
    • 31.1 Vysílání na 433 MHz
    • 31.2 nRF24L01+
  • 32 Procesory, počítače, mikrořadiče
    • 32.1 Mikroprocesor 8080A
    • 32.2 Přerušení
    • 32.3 Periferie
    • 32.4 Složitější periferie
    • 32.5 Jednočipový mikropočítač
    • 32.6 Atmel AVR
    • 32.7 Další mikrokontroléry
    • 32.8 Tak málo nožiček…
    • 32.9 Programování jednočipů
  • 33 Displeje
    • 33.1 Znakový displej 1602, 2004
    • 33.2 Grafický displej 12864
    • 33.3 Další displeje
    • 33.4 Bezdrátový displej k naší meteostanici
  • 34 Klávesnice
    • 34.1 Šetříme vývody
    • 34.2 Připojujeme klávesnici od PC
    • 34.3 Matice tlačítek
    • 34.4 Postavte si třeba… kalkulačku?
  • 35 Osm tlačítek na třech vodičích
    • 35.1 Multiplexior / Demultiplexor
    • 35.2 PISO a SPI
    • 35.3 Analogová cesta
    • 35.4 R-2R
  • 36 Joystick
  • 37 ESP8266 WiFi
    • 37.1 Moduly ESP8266
    • 37.2 Převodník napěťových úrovní
    • 37.3 WeMos D1 Mini, NodeMCU
    • 37.4 Bezdrátový teploměr s WiFi
    • 37.5 Instalace podpory ESP8266 do Arduino IDE
    • 37.6 WiFi Manager
    • 37.7 Klient / server?
  • 38 Low Power
    • 38.1 Solární články
  • 39 Sigfox
    • 39.1 Co je to Sigfox?
    • 39.2 Cloudový teploměr se Sigfoxem
    • 39.3 Co s daty v Sigfoxu?
  • 40 Šťastnou cestu…
  • Přílohy
    • Nástroje a weby
    • Nákupní seznam začínajícího hobby elektronika
    • EduShield
    • Nahrání firmware do EduShieldu
    • Turris Omnia pro experimenty s elektronikou
    • Karnaughova mapa
    • „Dobré rady nad zlato“ na jednom místě
Powered by GitBook
On this page

Was this helpful?

  1. 5 Vedle sebe, za sebou

5.9 Co jsou vlastně ty diody zač?

Previous5.8 Úbytek napětí na LEDNext5.10 Datasheet

Last updated 5 years ago

Was this helpful?

Dioda je dnes většinou polovodičová součástka (dříve i v podobě elektronky), jejíž nejvýraznější vlastností je, že vede proud pouze jedním směrem. Má dva vývody, anodu a katodu, a vede proud pouze ve směru od anody ke katodě.

O diodách se ještě budeme bavit později, zde jen stručně…

Napětí určité výše je potřeba, aby se dioda vůbec „otevřela“, aby vedla proud. Takový je princip polovodičových přechodů, což si vysvětlíme později. Pokud je na diodě napětí menší, je zavřená – tedy její odpor je velmi vysoký a neteče skrz ni žádný proud, v žádném směru. Jakmile je na diodě napětí vyšší, dioda se skokově otevře (její odpor se velmi výrazně sníží) a proud může procházet – ovšem pouze v jednom směru.

Však si to sami zkuste. Nechte LED svítit, a pak ji otočte o 180 stupňů, prohoďte její vývody. Svítit nebude. V druhém směru („závěrném“) je dioda zavřená. Zase až do určité velikosti napětí, tentokrát zvaného průrazné. Pokud zapojíme vyšší napětí v závěrném směru, dioda se rychle zničí. Viz následující obrázek, který ukazuje závislost proudu na napětí, připojeném k (obecné) diodě.

V pravé části grafu je dioda zapojená v dopředném – průchozím směru. Proud teče velmi malý, a až u hranice VF se dioda otvírá a vede proud velmi dobře, téměř s nulovým odporem.

V závěrném směru, tedy vlevo od svislé osy, prochází velmi malý proud. V bodě VBR (Breaking Voltage, průrazné napětí) se dioda zničí, „prorazí“, a přestane fungovat. Dopředné napětí bývá nízké, okolo desetin až nízkých jednotek voltů, průrazné je o řády větší – podle typu třeba 50 voltů, ale i 1000.

Speciální variantou diody je Zenerova dioda. Ta se při určitém napětí v závěrném směru „prorazí“, ale vratně. Proto se používá ke stabilizaci či přepěťové ochraně. Jakmile napětí překročí danou mez, dioda se otevře, vede proud, a tím snižuje napětí.

V číslicové technice se s diodami setkáme poměrně často. Používají se například k ochraně obvodů před přepólováním. Dříve se diody používaly v těch nejjednodušších přijímačích – krystalkách, což byly vděčné obvody pro amatéry, s nimiž jste pomocí několika součástek mohli poslouchat rozhlasové vysílání v pásmech AM. Diody se také používají k usměrňování střídavého napětí. V této knize se ale těmto oblastem nebudu věnovat šířeji a zájemce odkážu na jinou literaturu.

Ale myslím, že je právě teď vhodná chvíle udělat opět malou odbočku. Podíváme se, kde zjistit ta čísla, kterými tu šermuju, jako 0,7 V a 50 V. To jsem tak chytrý a Aštar Šeran mi ta čísla vnukl skrz alobalovou čepičku? Ale kdepak, podíval jsem se do datasheetu.

Do čeho že?

Do datasheetu!

eknh.cz/dioda
104-1.png