Hradla, volty, jednočipy
  • index
  • Poděkování
  • Předmluva vydavatele
  • Předmluva mentora
  • Výmluvy místo předmluvy
  • 1 Budu velkým elektronikem a budu stavět hrozně cool obvody!
    • 1.1 Blikač
    • 1.2 „Dílna“
    • 1.3 Kde nakoupit součástky?
    • 1.4 Nákupní seznam: Součástky pro blikač
  • 2 Postavte si blikač – teď už to snad půjde lépe
    • 2.1 Který rezistor je ten pravý?
    • 2.2 Měření multimetrem
    • 2.3 LED podrobněji
  • 3 Hlava, koleno, zem…
    • 3.1 „Nemá to něco společného s atomy?“
    • 3.2 Napětí
    • 3.3 Proud
    • 3.4 Vodič a nevodič
    • 3.5 Odpor
    • 3.6 Měření, měření!
    • 3.7 Ohmův zákon
    • 3.8 Výkon
    • 3.9 … a malé opáčko
    • 3.10 Zkratky u značení
    • 3.11 Vyvolená čísla
    • 3.12 Pro lepší představu
    • 3.13 Střídavý proud
    • 3.14 Zkrat
    • 3.15 Multimetr jako zkrat?
    • 3.16 Elektromagnetická indukce
    • 3.17 Značky pro schémata
  • 4 Zdroje napětí
    • 4.1 Společná zem
  • 5 Vedle sebe, za sebou
    • 5.1 Svítilna s LEDkou
    • 5.2 Sériové zapojení
    • 5.3 Dělič napětí
    • 5.4 Paralelní zapojení
    • 5.5 Kirchhof 2
    • 5.6 Baterie sériově – paralelně
    • 5.7 Potenciometr
    • 5.8 Úbytek napětí na LED
    • 5.9 Co jsou vlastně ty diody zač?
    • 5.10 Datasheet
  • 6 Základní elektronické součástky
    • 6.1 Rezistor
    • 6.2 Kondenzátor
    • 6.3 Cívka
    • 6.4 Transformátor
  • 7 Polovodiče
    • 7.1 P-N přechod
    • 7.2 Dioda
    • 7.3 Tranzistor
    • 7.4 Rozsvítíme prstem LED!
    • 7.5 Tranzistor řízený polem (FET)
    • 7.6 Šoupejte nožkou…
    • 7.7 MOSFET
    • 7.8 A to je všechno s polovodiči?
  • 8 Pouzdra elektronických součástek
    • 8.1 Co je to SMT a THT
    • 8.2 DIP, DIL
    • 8.3 Co s těmi ostatními?
  • 9 Blikač s Arduinem
    • 9.1 Když se řekne Arduino
    • 9.2 Programování Arduina
    • 9.3 Blikání Arduinem
    • 9.4 Krok zpět k drátům
    • 9.5 Arduino a EduShield
  • 10 Fotorezistor
    • 10.1 Obrácená logika
    • 10.2 Trimry
    • 10.3 Lepší řešení detektoru tmy
    • 10.4 Fotorezistor a Arduino
  • 11 Termistor
  • 12 LM35
  • 13 „Jak naučit kámen počítat“
    • 13.1 Stavebnice
    • 13.2 Logické funkce
    • 13.3 TTL a CMOS
    • 13.4 Operace s bity
    • 13.5 Booleova algebra, výroková logika
    • 13.6 Logika v číslicové technice
    • 13.7 U-káz-ka! U-káz-ka!
    • 13.8 Tlačítko a přepínač
    • 13.9 Pull Up a Pull Down
    • 13.10 Pomalé tlačítko
    • 13.11 Schmittův obvod
    • 13.12 Blokovací kondenzátor
    • 13.13 Buzení z Arduina
  • 14 Kombinační logika
    • 14.1 De Morganův zákon
    • 14.2 XOR
    • 14.3 Logické funkce dvou proměnných
    • 14.4 Vícevstupová hradla
    • 14.5 Mimochodem, když máme NAND, co ty ostatní?
    • 14.6 Zjednodušování logických výrazů
    • 14.7 AND-OR-INVERT
    • 14.8 Multiplexor
    • 14.9 Proč slučujeme přes OR?
    • 14.10 Dekodér (demultiplexor) „1-z-N“
    • 14.11 Vícebitové varianty
    • 14.12 Otevřený kolektor, třetí stav, OE
    • 14.13 Dekodéry
    • 14.14 Pojďme, budeme už fakt něco počítat!
    • 14.15 Aritmeticko-logická jednotka (ALU)
  • 15 Sedmisegmentovky LED
    • 15.1 Víc sedmisegmentovek…
  • 16 Jak vypadá hradlo uvnitř
    • 16.1 Proč zapojovat blokovací kondenzátory k napájení
    • 16.2 Negované signály
    • 16.3 MOS, CMOS
  • 17 „Plnou parou vzad!“ – „Ale jak daleko?“
    • 17.1 Ještě pípat!
  • 18 Zpětná vazba
    • 18.1 Astabi-cože?
    • 18.2 Blikač
    • 18.3 Krystalový oscilátor DIL
    • 18.4 Monostabilní klopný obvod
    • 18.5 Detektor pohybu
    • 18.6 Bistabilní klopný obvod R-S
    • 18.7 Zakázané kombinace, zpětná vazba, …
    • 18.8 Hodiny
    • 18.9 Synchronní / Asynchronní
    • 18.10 Symbol pro klopný obvod
    • 18.11 Reálný klopný obvod D: 7474
    • 18.12 Reálný latch 7475
  • 19 Panna, nebo orel?
    • 19. 1 Náhoda? Nemyslím si…
    • 19.2 Střída
    • 19.3 PWM
    • 19.4 Dělení kmitočtů
    • 19.5 Klopný obvod T
    • 19.6 Klopný obvod J-K
  • 20 Čítače
    • 20.1 Čítač s nulováním
    • 20.2 Čítače v praxi
    • 20.3 Hrací kostka
    • 20.4 Další čítače
    • 20.5 Ještě nějaké čítače?
    • 20.6 Rotační enkodér
    • 20.7 Čítač s dekodérem 1-z-10 typu 744017
    • 20.8 Počítadlo k autodráze
  • 21 Posuvné registry
  • 22 Paralelní a sériová rozhraní
    • 22.1 Buzení displeje ze sedmisegmentovek
    • 22.2 Posuvný řadič SIPO 74HCT595
  • 23 Sériová komunikace
    • 23.1 Sériová sběrnice SPI
    • 23.2 Sériová sběrnice I2C
    • 23.3 Prakticky…
    • 23.4 EduShield a displej
    • 23.5 RS-232, UART, Serial…
    • 23.6 Převodník USB na sériové rozhraní
    • 23.7 1-Wire
  • 24 Paměti
    • 24.1 7489 – 64 bitů RAM
    • 24.2 Dynamická RAM
    • 24.3 ROM, PROM a další
    • 24.4 To nejlepší z obou světů
    • 24.5 Několik tipů k pamětem
    • 24.6 Jak se zapisuje do EEPROM či FLASH?
    • 24.7 Sériové paměti
  • 25 Sériová paměť prakticky
  • 26 Hodiny reálného času
  • 27 Paměťové karty
  • 28 Logický analyzátor, logická sonda
  • 29 Elektronika a svět kolem nás
    • 29.1 Ovládáme přírodu elektronikou
    • 29.2 Příroda ovládá elektroniku
  • 30 Meteostanice
    • 30.1 Výběr součástek
    • 30.2 Špinavej trik
    • 30.3 Stavíme z polotovarů
  • 31 Bezdrátový přenos dat
    • 31.1 Vysílání na 433 MHz
    • 31.2 nRF24L01+
  • 32 Procesory, počítače, mikrořadiče
    • 32.1 Mikroprocesor 8080A
    • 32.2 Přerušení
    • 32.3 Periferie
    • 32.4 Složitější periferie
    • 32.5 Jednočipový mikropočítač
    • 32.6 Atmel AVR
    • 32.7 Další mikrokontroléry
    • 32.8 Tak málo nožiček…
    • 32.9 Programování jednočipů
  • 33 Displeje
    • 33.1 Znakový displej 1602, 2004
    • 33.2 Grafický displej 12864
    • 33.3 Další displeje
    • 33.4 Bezdrátový displej k naší meteostanici
  • 34 Klávesnice
    • 34.1 Šetříme vývody
    • 34.2 Připojujeme klávesnici od PC
    • 34.3 Matice tlačítek
    • 34.4 Postavte si třeba… kalkulačku?
  • 35 Osm tlačítek na třech vodičích
    • 35.1 Multiplexior / Demultiplexor
    • 35.2 PISO a SPI
    • 35.3 Analogová cesta
    • 35.4 R-2R
  • 36 Joystick
  • 37 ESP8266 WiFi
    • 37.1 Moduly ESP8266
    • 37.2 Převodník napěťových úrovní
    • 37.3 WeMos D1 Mini, NodeMCU
    • 37.4 Bezdrátový teploměr s WiFi
    • 37.5 Instalace podpory ESP8266 do Arduino IDE
    • 37.6 WiFi Manager
    • 37.7 Klient / server?
  • 38 Low Power
    • 38.1 Solární články
  • 39 Sigfox
    • 39.1 Co je to Sigfox?
    • 39.2 Cloudový teploměr se Sigfoxem
    • 39.3 Co s daty v Sigfoxu?
  • 40 Šťastnou cestu…
  • Přílohy
    • Nástroje a weby
    • Nákupní seznam začínajícího hobby elektronika
    • EduShield
    • Nahrání firmware do EduShieldu
    • Turris Omnia pro experimenty s elektronikou
    • Karnaughova mapa
    • „Dobré rady nad zlato“ na jednom místě
Powered by GitBook
On this page

Was this helpful?

  1. 23 Sériová komunikace

23.7 1-Wire

Previous23.6 Převodník USB na sériové rozhraníNext24 Paměti

Last updated 5 years ago

Was this helpful?

Co myslíte, šlo by ještě nějaké vodiče ušetřit? Určitě ano! Co třeba po jednom jediném vodiči?

Výrobce Dallas Semiconductors přesně takovou sběrnici navrhl, a nazval ji 1-Wire. Ve skutečnosti tedy používá vodiče dva (ten druhý je samozřejmě zem), ale data, data jdou jen po jednom drátu. Princip je podobný jako u sběrnice I2C – každé zařízení má vlastní adresu a komunikace využívá principu otevřeného kolektoru – tedy pomocí rezistorů se komunikační linka udržuje ve stavu 1, a zařízení, popřípadě „master“, ji stahuje k 0. Na rozdíl od I2C se zde nepoužívá hodinový signál. Místo něj je použito přesné časování datových pulsů.

Dallas Semiconductors (DS) je snad jediný výrobce, který pro tuto sběrnici vyrábí periferní zařízení, a tak není tato sběrnice moc rozšířená. Mikrokontroléry pro ni nemají specializovaný komunikační obvod, komunikace se řeší softwarově, ale přesto je dobré se o této sběrnici zmínit, a to ze dvou důvodů.

Jednak proto, že pro tuto sběrnici existují zajímavá zařízení – kromě malých pamětí nebo teploměrů i speciální „iButtony“, které se používají v zabezpečovacích zařízeních, pro kontrolu přístupu apod.

iButton může obsahovat buď unikátní číslo (ID), nebo například paměť pro data či pro šifrovací klíč.

Zajímavé na iButtonu je, že má pouhé dva vývody. Zem a data. Jak je to možné a kde je napájení? Je použitý takový fígl, a to je druhý důvod, proč se o 1-Wire zmínit. Fíglu se říká „parazitní napájení“. Obvod využívá toho, že komunikační linka je tažena pomocí rezistoru k napájecímu napětí, a čerpá z ní napájecí napětí, které si ukládá do kondenzátoru. Když se pak se zařízením komunikuje, pracuje zařízení právě na tuto nastřádanou energii. Řídicí procesor může takovým zařízením pomoci tím, že je ve volných chvílích připojí natvrdo na napájecí napětí, tedy nikoli přes pull up rezistor, a tím zrychlí jejich nabíjení.

24 Paměti

294-1.jpeg